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[i]   A new code for solving radiation belt diffusion equations has been developed and 
applied to the 2-D bounce-averaged energy pitch angle quasi-linear diffusion equation. 
The code uses Monte Carlo methods to solve ltd stochastic differential equations 
(SDEs) which are mathematically equivalent to radiation belt diffusion equations. We 
show that our SDE code solves the diffusion equation with off-diagonal diffusion 

v-J coefficients in contrast to standard finite difference codes which are generally unstable 
(^ when off-diagonal diffusion coefficients are included. Our results are in excellent 
—* agreement with previous results. We have also investigated effects of assuming purely 
l"" parallel propagating electromagnetic waves when calculating the diffusion coefficients and 
O find that this assumption leads to errors of more than an order of magnitude in flux at 

some equatorial pitch angles for the specific chorus wave model we use. Further work is 
needed to investigate the sensitivity of our results to the wave model parameters. 
Generalization of the method to 3-D is straightforward, thus making this method a very 
promising new way to investigate the relative roles of pitch angle, energy, and radial 
diffusion in radiation belt dynamics. 

Citation:    Tao, X., A. A. Chan, J. M. Albert, and J. A. Miller (2008), Stochastic modeling of multidimensional diffusion in the 
radiation belts,/ Geophys. Res., 113, A07212, doi:10.1029/2007JA012985. 

1.    Introduction work we introduce another method which uses probabilistic 
r i   -ri_   r ^L. _•• .       u i. representations of solutions of Fokker-Planck equations 
[2]   The Earth s outer radiation belt is very dynamic, and rcT  ....     ,„„,   ^        t. . ,    lflnol P .    . 

,L f_      - , ,      .        i •   J [Freidlin,  1985; Costantun et at.,  19981 via stochastic 
electron fluxes can vary by several orders of magnitude ACr     »• 1        .•       ,Cnr \      A       A   \        -. •     J '   . ,        .       .. . . differential equations (SDEs), and we develop a 2-D code 
during storm times, which makes it very hazardous e        , •        .. .     ,        . JCC.   . 6        _ r «...    1    .rvr.-.T f°r solving pitch angle and energy diffusion equations, 
to spacecrafts and astronauts [e.g., Baker et at.,  19971. ,-, ,    T,   -  .   °,._ °f.    ,    .,    __,,?      ,    , 
_     ... ,.~.   .       , }.     i , Compared with finite difference methods, the SDE method 
Quasi-linear diffusion theory has been used to evaluate ,      T .     t r-   .  ..    crvc.      lU   • • 
7 1 i-       • 1   a 1        J-   •      1   1 has three main advantages. First, the SDE method is very 
dynamic changes of particle fluxes in the radiation belts      «- •    »    . , ... , ,,        .       e    • L 
,.,,       *>•A   A,I J <s ->•r   ,, J T-. efficient when solutions on only a small number of points 
[Albert, 2004; Albert and Young, 2005; Home and Thome, .   •    .       ..    ,   ,      , ••   . .   .• ,   ••        •      , i__,   ' ,   „„„,,  „.      , ... , -a.   . are desired, particularly when applied to high-dimensional 
2003; Home et al., 20031. Using the quasi-linear diffusion , , •  ., • ,        . ., .• ... 

.,...,,.. , problems, and it is easy to code and parallelize, with 
theory to model radiation belt dynamics requires at least two „ ,. \.        «• • •       » c       A       .U .U 
..J-

7
. -ii^     j-^   • parallehzation efficiency close to one. Second, with the 

kinds of computations: numerical solution of a diffusion £,,-,c _ ».   A ui   »   u    JI        1: *_7 u      A . . ,   . ,. , .....        .      . SDE method, we are able to handle complicated boundary 
equation, which is a one-dimensional or multidimensional .       77     u. A-    .   u      J   •     I _M,.      '      , .._   . geometry other than constant-coordinate boundaries (see 
Fokker-Planck equation, depending on diffusion processes °-     \ .,,   -p, •  . _,.   ,.        t..    <,„,-.      ,,   \ . 

..        ,    ,    ,   •       i-j-^   • ~- • section 2.2). Third, generalization of the SDE method to 
we are interested in, and calculation of diffusion coefficients. .    .      • •     ._. w •       . . .. 

r T    ,,.       r*/Jwi .... 1       . , higher dimensions is straightforward, and we expect the 
[3]   Albert [2004] has shown that numerical problems       °.    . ,    . ,•   , ,   ° 1  i T->     A- »•      u 1. .        , , . . _ .„    ,.~, *j    , method to be applicable to general 3-D radiation belt 

arise when applying standard finite difference methods to ACc .• t? r   *• c   •    \ 
,   ,        .   KK i   ° ,.~   . , f diffusion equations. For more applications of similar 

...     ° ~. .• 1   .-«!   • °ar • .„ methods using relations between Fokker-Planck equations 
rapidly varying off-diagonal diffusion coefficients. Albert    and SDEs  ^ zh       [1999] AlMht e, u/  r20031 
and Young [2005] developed a method for the 2-D diffusion    Alanko_Huota;t et a'L [2007] Qi„ e\ al [2005], and Yamada 
equation which diagonalizes the diffusion tensor by trans- , riqqon 
forming to a new set of coordinates and solves the trans- r ,' L    A        I •      A cc   •                                .11 
r        f              ,           ,   c .     ,.„                1   j   ,    , • K]   Besides solving diffusion equations, correctly calcu- 
formed equation by simple finite difference methods. In this , ;•             • .•         ••«-               «? •    .   •     ,     •        .    . M            /      K lating quasi-linear diffusion coefficients is also important 

for numerical modeling of the radiation belt dynamics using 
'Department of Physics and Astronomy, Rice University, Houston,     quasi-linear theory. Albert [2005] and Glauert and Home 

Texas USA. ^005] have shown full calculations of diffusion coefficients 
"Air torcc Research Laboratory, Space Vehicles Directorate, Hanscom      c . ..... 

Air Force Base. Bedford. Massachusetts, USA. for cyclotron resonant wave-particie interactions, where up 
'Department  of  Physics.   University  of Alabama   in   Huntsvillc,      to  n   =  ±  5   resonances  are   included.   However,   the  full 

Huntsvillc, Alabama. USA. calculation of diffusion coefficients is very time consuming. 
Summers [2005] derived simplified formulae for coeffi- 

0 H^227W200y7JA012985S09 oTPhySiCal U"ion cients with a Parallel ProPagation approximation (and hence 
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only the n = —1 resonance is included {Albert, 2007]), and 
the computation becomes much faster. Shprits el al. [2006] 
calculated bounce-averaged pitch angle and energy diffu- 
sion coefficients £>„o„o and Dpp with the parallel propaga- 
tion approximation for E < 1 MeV particles and compared 
them with fully calculated coefficients from the PADIE code 
of Glauert and Home [2005]. They concluded that coef- 
ficients for field-aligned waves are close to coefficients for 
waves with mildly oblique wave normal angle distribution 
from the PADIE code. However, using the wave model 
from Home et al. [2005], we compute particle fluxes and 
we show that for E = 2 MeV electrons, DnQn0 and Dpp 

calculated with the parallel propagation approximation 
produce flux differences of about 1 order of magnitude at 
some pitch angles, compared to using fully calculated 
coefficients. Furthermore, we show that by including off- 
diagonal terms in the calculation, the parallel propagation 
approximation also produces large errors in fluxes for both 
E = 0.5 MeV and 2 MeV electrons at small pitch angles. 

[5] The remainder of this paper is organized as follows. 
The SDE method and its numerical implementation are 
introduced in section 2. In section 3 we present the 
application of the SDE method to a bounce-averaged 
radiation belt pitch angle and energy diffusion equation. 
After describing the implementation of the SDE method for 
the pitch angle energy equation (section 3.1), we show 
comparisons between results from the SDE method and the 
Albert and Young [2005] transformation method (section 3.2). 
Then fluxes calculated from diffusion coefficients with the 
parallel propagation approximation [Summers, 2005] are 
compared with fluxes computed with coefficients from full 
quasi-linear theory [Albert, 2005] (section 3.3). We summarize 
our work and discuss future work in section 4. 

2.    SDE Method 

[6] Our SDE code is based on mathematical results which 
show that solutions of diffusion equations can be obtained 
using an equivalent stochastic process. Thus, we first give a 
description of a stochastic process using ltd stochastic 
differential equations in section 2.1. Then we show how 
these lead to probabilistic representations of solutions of 
diffusion equations in section 2.2. 

2.1.    ltd Stochastic Differential Equations 
[7] Stochastic differential equations (SDEs) are used to 

describe stochastic processes. They differ from ordinary 
differential equations by having terms involving random 
variables [Gardiner, 1985; Freidlin, 1985]. A general 
m-dimensional SDE with an ^-dimensional Wiener process 
is written as 

dX(f) = b(X,/)<fc + «r(X,t)</W(t), (1) 

where the m vector X represents an m-dimensional 
stochastic process (Xu X2,. •., Xm). Throughout this work, 
stochastic processes are indicated by uppercase characters, 
and their values at a given time are represented by 
corresponding lowercase characters. The n vector W is 
an /j-dimensional Wiener process (Wx, W2, ..., W„) and 
d\V(t) = XV(t + dt) - W(0 [Gardiner, 1985]; an increment of 
a one-dimensional Wiener process is proportional to a 

Gaussian random number. The m vector b and the m x n 
matrix a are coefficients that determine the values of X(/), they 
will be directly related to the coefficients of a corresponding 
diffusion equation in section 2.2. Stepping equation (1) in time 
generates a random walk trajectory through X space. 

[8] Note that SDEs may be formulated using two main 
mathematical methods; the ltd method and the Stratonovich 
method [Gardiner, 1985]. In this work we use Ito SDEs 
because they are directly related to diffusion equations of 
interest for the radiation belts and they are mathematically 
more convenient [Oksendal, 1992; Freidlin, 1985; Costantini 
etal., 1998]. 

2.2.   Probabilistic Representation of Solutions of 
Diffusion Equations 

[9] To solve a diffusion equation using SDEs, we can first 
write the diffusion equation in Fokker-Planck form and then 
obtain equivalent "time-forward" SDEs from the diffusion 
equation. These time-forward SDEs can then be used to 
simulate particle trajectories using a Monte Carlo technique, 
and the distribution of particles at any given time can be 
obtained by binning particles in phase space. This time- 
forward SDE method is presented in Appendix A to show 
local effects of off-diagonal terms on the distribution of 
particles. Alternatively, in this section we present a "time- 
backward" SDE method, where solutions of diffusion 
equations are represented by the mean value of a functional 
of trajectories of a stochastic process [Freidlin, 1985]. This 
is the method used in our current SDE code. Compared with 
the time-forward method, the time-backward method is 
more efficient when solutions on fewer points are of 
interest, and it is better for handling a variety of boundary 
conditions. 

[10] To introduce the time-backward SDE method, let us 
first consider a (/-dimensional diffusion equation written as 

df &f 
dt dXldXl 

l.J=\ 

+ ^2 bi{t, %) -g- (t, x)+c('. »)/•(/, x), 
dx, 

with initial and Dirichlet boundary conditions 

/(0.x)=g„(x).    xeD. 

f{t,x)=g,(t.x),    xeOD. 

(2) 

(3) 

(4) 

Here D is the domain of the problem with boundary OD, and 
gi(0, x) = go(x) on OD. Note that OD is not restricted to 
constant coordinate surfaces in the SDE method [Freidlin, 
1985]. 

[11]   The solution /(x, t) of equation (2) is related to the 
following ^-dimensional stochastic process: 

dX{s) = b(f - s,\) ds + a(t - s,X) cfW{s), 0 < s < t,     (5) 

where X(s = 0) = x and W(s) is a rf-dimensional Wiener 
process. Here the d x d matrix a is defined by crerr = a. 
Note that cr is not uniquely determined by this equation, but 
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according to Levy's theorem [Zhang, 1999; Freidlin, 1985], 
different choices of a generate equivalent stochastic 
processes that yield the same solution of the diffusion 
equation (2). Also, note that equation (5) is a time-backward 
SDE: at s = 0, we evaluate b and a at time /, while at.? = t, 
we evaluate b and a at time zero. The solution/(x, /) is then 
represented by the stochastic process defined in equation (5) 
as 

f(x,t) = E(F,), (6) 

where h denotes the expectation value and Fx is defined by 

(«,(XL,)exp(rU), r>r, 
F, = I (7) 

U,(/-T,XU)exp(rU),    r<t, 

where r has the value of * when the stochastic process X(.s) 
exits from the boundary OD for the first time and Y(s) is 
defined by 

Y(s) f'c(t-r,X( 
•la 

r))dr. (8) 

[12] Numerical calculation of/can be constructed easily 
from equations (6) (8). To obtain f(\, t), we sample a 
number of trajectories of the stochastic process defined by 
equation (5) starting from x and s = 0, using a Monte Carlo 
technique. The simulation of a trajectory will stop either by 
reaching the initial condition at s = t (where time = 0) or by 
reaching the boundary of the domain D at s = r, whichever 
comes first, and returns a value defined by equation (7). 
Then we use the average of values returned by all trajecto- 
ries to approximate/(x, t). This process is repeated if we 
want to calculate/at other points. 

[\i] Now let us also consider a particular type of 
Neumann boundary condition that is commonly encoun- 
tered in radiation belt diffusion equations: 

V/n=0.    x e d,£>. (9) 

where V/= (Of/Ox', Of/Ox2,..., 0f/0xJ), the boundary 0tD 
is the part of OD with the Neumann condition, and n is the 
inward unit normal vector on 0\D. General methods for 
implementing Neumann boundary conditions in SDE solu- 
tions are given by Freidlin [1985] and Costantini et al. 
[1998]; here we simply note that condition (9) can be 
enforced in our numerical calculation of/(x, 0 as follows: 
Every time a trajectory reaches the Neumann boundary d\D, 
we immediately reflect it about the normal vector n [Bossy et 
al., 2004]. This trajectory will later be stopped by either 
reaching the initial condition or a Dirichlet boundary, and at 
that time the trajectory returns a value defined by equation (7). 

3.    Application 

[u] In this section, we apply the above (see section 2) SDE 
method to a bounce-averaged pitch angle and energy diffu- 
sion equation [Albert, 2004]. In section 3.1 we derive the 
stochastic process used to solve the diffusion equation. In 
section 3.2 fluxes calculated using the SDE code are com- 

pared with results from Albert and Young [2005] to show that 
the SDE code is capable of solving the diffusion equation 
with off-diagonal diffusion coefficients. To show the effect of 
diffusion coefficients with the parallel propagation approxi- 
mation [Summers, 2005] on particle fluxes, we solve the 
diffusion equation using these diffusion coefficients and in 
section 3.3 the results are compared with those obtained from 
fully calculated coefficients. 

3.1.   Application to Pitch Angle and Energy 
Diffusion Equations 

[15] We apply the above SDE method to the bounce- 
averaged pitch angle and energy diffusion equation written 
in equatorial pitch angle and momentum (a0, p) 

by _  1   d   (      1 8/        df\ 

-4i°- \_Of_ 

"•"pdnn 
/>: or 

•dp ) 
(10) 

where D,l0„o, D,t0p, and Dpp are bounce-averaged pitch 
angle, mixed, and momentum diffusion coefficients [Albert, 
2004]. Here G is a Jacobian factor, G=p'1\c\n) sin(o0) cos(a0), 
and 7"(ft0) ~ 1.30 - 0.56 sin(a0) is the normalized bounce 
period. Initial and boundary conditions are chosen to be the 
same as from Albert and Young [2005]. Thus, the initial flux 
is j(t = 0) = exp[-(£ - 0.2)/0.1][sin(ao) - sin(ani)], where 
the loss cone angle o0z. = 5° and flux j is related to phase 
space density /by / =f/p2. Boundary conditions are 

f\a 

df_ 
don 

0. 

<i„=W 

/!, 

/U=£«.= & 

J«=O)\E-EJP: 

(11) 

(12) 

(13) 

(14) 

where Emm = 0.2 MeV, £max = 5 MeV, and /;„„„ is the 
momentum corresponding to £min [Albert and Young, 
2005]. 

[16]   To solve the equation using the time-backward SDE 
method, we first write equation (10) in the form of (2): 

Ot        fP-   0a2
0 p   Onodp       pn Op* 

+ b"°7kT0 
+ h"a-p- (15) 

with 

b„„(t,n0,p) = 
1 0      /GDq.0, 

Gp 0n0 \    P 4im "<> 
a 

V'-o,P)-^^(GA, 'h^GD""] (17) 
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1.0 

0.1 

integrated using the Euler-Maruyama method [Kloeden 
and Platen, 1992]: 

Daop'/P2 sign(DaC 

io-* | 

io'5p 

1CT6 

1CT7 

10"8 

io-9U 

o-,0l 

0       30      60      90 0       30      60      90 
a0 a0 

Figure 1. D(MnQ/p2, Dp/,/p
2, and \Dll0p\/p2: inverse time 

scales in units of s from diffusion coefficients of Albert 
and Young [2005]. Also shown is the sign of the cross 
diffusion coefficients.(Reprinted from Albert and Young 
[2005].) 

Thus, the two-dimensional stochastic process defined in 
equation (5) becomes 

dAo(s) = bao(t-s,A0,P)ds + andW, + andfV2.        (18) 

dP(s) = bp(t-s,A0,P)ds + a2idWl + a21dW2. (19) 

with Ao(s=0) = a0 and P(s=0) = p. Then, because of the 
Neumann boundary condition at a0 = 90°, we numerically 
reflect A0 with respect to a0 = 90° if it is larger than 90°. 
Here components of the matrix a are defined by 

f 21 <^22 

CTl 1 °l\ 

0\1<J22 

2ZWP2 2DaJP 

2DnoP/p    2Dpp 

(20) 

[17]   In this work, we choose al2 = 0 for simplicity and 
then the other components are 

<7|!   =   V/2D<,„n„/P- 

<72i = y/w^/y/DZ 

&n = \J2DPP - er 

(21) 

(22) 

(23) 

where we have used the fact that D„0(M is never zero in 
equation (22). 

[is]   We have developed a 2-D SDE code to solve the 
diffusion equation (10) where SDEs (18) and (19) are 

Ao(sn+i) = A0(s„) +bt,„[t -s„,Ao(s„),P(sn)]As 

+ al](s„)AWi + oX2(sn)AW2. 

P(sn+i) = P(sn) + bp\t - s„.A0(s„),P(sn)} As 

+ a2l(s„) AW, + a22(s„)AW2. 

(24) 

(25) 

Here AW = y/s„+i - s„ N(0, 1), where M0, 1) is a standard 
Gaussian random number with zero mean and unit variance 
generated using the Box-Muller algorithm [Press et al., 
2002]. Because the original time-backward SDE method 
requires fresh samples of trajectories for every different (a0, 
p) and traces trajectories back to the initial condition or to a 
boundary every time, the current SDE code is less efficient 
when solutions on many grid points for long times are 
needed. Improving the efficiency of the SDE code is one of 
tasks in our future work. In this work, we mainly want to 
show that the method can be used to solve multidimensional 
diffusion equations. Results from the SDE code are compared 
with those of Albert and Young [2005] in section 3.2. 

3.2.   Comparisons With Results of 
Albert and Young [2005] 

[19] Albert and Young [2005] solve the diffusion 
equation (10) by first transforming to new coordinates 
which diagonalize the diffusion tensor and then applying 
standard finite difference methods to the transformed diffu- 
sion equation. The bounce-averaged diffusion coefficients 
A»o,»o> DnQp, and Dpp for storm time chorus waves were 
calculated at L = 4.5, with computational methods of Albert 
[2005]. The wave model used to calculate diffusion coef- 
ficients is described by Home et al. [2005] and Albert and 
Young [2005]; the wave magnetic field is given by B2 = 
o{u)gJfsiaS), where the wave power spectral density 
B

2
(UJ) and the wave normal angle (tan#) distribution func- 

tion g^.(tan#) are truncated Gaussian functions defined 
between lower and upper frequency cutoffs (UJLC < UJ < 
u>uc) and wave normal angle cutoffs (9LC < 9 < 9UC). The 
latitudinal distribution of the waves and the ratio of electron 
plasma frequency (fpe) to electron cyclotron frequency (fce) 
are the same as those used by Home et al. [2005] and Albert 
and Young [2005] and are shown in Table 1. Similar models 
were used by Li et al. [2007]. Up to n = ±5 resonance 
harmonics were included in the calculation. The calculated 
diffusion coefficients D,vo,l0 are proportional to (pAaQ)2 I 
At, as from Lyons [1974a, 1974b] and are divided by p to 
give the inverse time scales plotted in Figure 1. 

[20] Using the above diffusion coefficients in equation (10), 
we obtain fluxes for E = 0.5 MeV and 2.0 MeV electrons 
with n0 ranging from 6° to 88° with 1° spacing at t— 0.1 
and 1 day. We have sampled N = 9000 trajectories at each 
n0 for E = 0.5 MeV and N = 18000 trajectories for E = 
2.0 MeV with dt = 0.0004 day. The chosen dt gives small 
relative change in a0 and E per step, compared with scales 
of the diffusion coefficients and initial phase space density. 
Our choices of N and dt might not be optimal, and choosing 
N adaptively is probably better (G. Cunningham, personal 
communication, 2007). Results from the SDE code are 
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Table 1. Latitudinal Distribution of the Waves and fpe/fce of the 
Wave Model [Home et ai, 2005] Used to Calculate Diffusion 
Coefficients 

Local Time Sector 

2300-0600 MLT 0600-1200 MLT 1200-1500 MLT 

fpjfc. 
Latitudinal range 

~3.4 to 2.5 
0° to 15° 

~3.0 to 0.9 
15° to 35° 

~5.9 to 1.4 
10° to 35° 

compared with those of Albert and Young [2005]. Figure 2 
shows the comparisons for E = 0.5 MeV electrons (Figure 2, 
top) and E = 2.0 MeV electrons (Figure 2, bottom), with 
results from the SDE method smoothed using a six-point 
moving window average in a() with Ao0 = 1 °. Within small 
numerical errors associated with each of the methods, the 
two sets of results are in excellent agreement, and they 
demonstrate that our SDE code is able to successfully solve 
the bounce-averaged pitch angle and energy diffusion 
equation. 

[21 ] To show the effects of ignoring off-diagonal terms on 
change of flux, we rerun the SDE code, setting off-diagonal 
diffusion coefficients to zero. Results are shown in Figure 3 

for 0.5 MeV (Figure 3, top) and 2 MeV (Figure 3, bottom) 
electrons. From Figure 3 we see that for 0.5 MeV electrons, 
while there is a relatively small effect at large pitch angles, 
ignoring off-diagonal terms overestimates electron fluxes at 
small pitch angles by a factor of 2 to ~5 at t = 1 day. For 
2 MeV electrons, ignoring off-diagonal terms overestimates 
fluxes by a factor of 5 to ~ 10 at t = 1 day, with larger errors 
at smaller pitch angles. Thus, off-diagonal terms are more 
important for 2 MeV electrons. We emphasize that these 
results are for the Home et ai [2005] wave model, and we 
note that the peak in flux of 2 MeV electrons near 30° may 
be related to the cutoff in wave power at 35° latitude in the 
Home et ai [2005] model (see discussion in section 4). 

3.3.   Effects of Parallel Propagation Approximation 

[22] Summers [2005] and Summers et ai [2007a, 2007b] 
have derived cyclotron resonance diffusion coefficients for 
field-aligned waves, where only the n = —1 resonance is 
included (henceforth denoted by £>"). This assumption of 
parallel propagation greatly improves the computation 
efficiency. Bounce-averaged D11 are given and compared 
with diffusion coefficients obtained from the PADIE code 
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Figure 2.   Comparisons between results obtained from the    Figure 3.   Fluxes for (top) E = 0.5 MeV and (bottom) E 
SDE method (solid lines) and the Albert and Young [2005] 
method (dashed lines) for (top) E = 0.5 MeV and (bottom) 
E = 2.0 MeV at / = 0.1 day (blue lines) and t = 1 day (red 
lines). Here black lines show the initial condition. 

2.0 MeV at t = 0.1 day (blue lines) and / = 1 day (red lines) 
with and without off-diagonal diffusion terms. Dashed lines 
are results without off-diagonal diffusion coefficients, and 
solid lines are results with off-diagonal terms. 
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Figure 4. Same as Figure 1, except that diffusion 
coefficients are calculated with the parallel propagation 
approximation. 

[Glauert and Home, 2005] by Shprits et al. [2006]. In the 
present work, we also calculate £>" using the methods of 
Albert [2005] with the same wave parameters as the wave 
model described in section 3.2, except that 0Lc = #uc = 0. 
The resulting diffusion coefficients are the same as those 
obtained from the PADIE code and are half of those given 
by Summers et al. [2007a] (this factor of 2 difference is 
discussed by Albert [2007]). 

[23] Figure 4 shows inverse time scales from diffusion 
coefficients with the parallel wave approximation. Com- 
pared with Figure 1, we see that the general behavior of D" 
is quite good, with larger differences for E > 1 MeV 
electrons. The off-diagonal terms of D are worse 
approximations than the diagonal terms, with details 
discussed by Albert [2007]. 

[24] To compare effects of D" with fully calculated 
diffusion coefficients D, we solve equation (10) for 0.5 MeV 
and 2 MeV electrons using the following four sets of 
diffusion coefficients: (1) D , (2) diagonal terms of D" 
(hereinafter referred to as £>jj), (3) D, and (4) diagonal terms 
of D (hereinafter referred to as Dr/). Results are shown in 
Figures 5   7. 

[25] Figure 5 (top) shows the comparison between fluxes 
calculated using Z)]} and Dd for 0.5 MeV electrons. We see 
that results from Dj agree very well with Dt/, with slight 
differences for n0 greater than about 40°. Figure 5 (bottom) 
shows the same comparison for 2.0 MeV electrons from 
which we see that the flux from Dj is smaller than that from 
Dd by up to ~5 orders of magnitude at low o0 (<15°) at t = 
1 day. This behavior occurs because D'j underestimates 
energy diffusion coefficients for high-energy particles at 
small pitch angles, where n ^ — 1 resonances also make a 
significant contribution. Thus, D'i produces larger differ- 

ences in fluxes for 2 MeV electrons than 0.5 MeV at small 
a0 compared with Dj. 

[26] Figure 6 shows comparisons between fluxes calcu- 
lated using Dj and D for 0.5 MeV electrons (Figure 6, top) 
and 2 MeV electrons (Figure 6, bottom). Figure 6 (top) 
shows that Dj overestimates increase of flux at small pitch 
angles for 0.5 MeV electrons, which is expected, because Dj 
yields very similar flux increases as Dd for 0.5 MeV 
electrons. For 2.0 MeV electrons, fluxes from D'i are smaller 
than that from D for «0 ~ 18° and larger for o0 S 18° at t = 
1 day (where the difference can be about 12 orders of 
magnitude). 

[27] Fluxes calculated from £>" and D (i.e., with off- 
diagonal terms included) for 0.5 MeV and 2 MeV electrons 
are shown in Figure 7 (top) and Figure 7 (bottom), 
respectively. Reasonable agreement between D" and D 
fluxes is obtained for «0 2; 50°, but significant differences 
occur at smaller pitch angles. For 0.5 MeV electrons, D" 
underestimates increases of flux at t = 1 day by approxi- 
mately an order of magnitude for a0 < 20°. For 2.0 MeV 
electrons, behavior of D" is worse at t = 1 day. We see from 
Figure 7 (bottom) that D1' underestimates increases of flux 
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Figure 5. Comparisons between results obtained from 
diffusion coefficients Dj (dashed lines) and Dj (solid lines) 
for (top) E = 0.5 MeV and (bottom) E = 2.0 MeV at t = 0.1 
day (blue lines) and t = 1 day (red lines). 
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Figure 6. Comparisons between results obtained from 
diffusion coefficients DJj (dashed lines) and D (solid lines) 
for (top) E = 0.5 MeV and (bottom) E = 2.0 MeV at / = 
0.1 day (blue lines) and / = 1 day (red lines). 

by ~ 1 4 orders of magnitude for 10° :S a0 £ 35°. Thus, 
the approximation of parallel propagation produces larger 
differences at small pitch angles for higher-energy particles, 
especially when off-diagonal terms are included. 

4.    Summary and Discussion 

[2«] In this work a new code, based on the mathematical 
theory of expressing solutions of diffusion equations in 
terms of related stochastic processes, has been developed 
for solving multidimensional radiation belt diffusion 
equations. Two examples are used to show its applications. 

[29] First, we apply the SDE code to a bounce-averaged 
pitch angle and energy diffusion equation and obtain 
excellent agreement with a previously developed method 
[Albert and Young, 2005]. We also confirm that ignoring 
off-diagonal terms in the diffusion equation overestimates 
increase of flux, especially at small pitch angles, at / = 1 day 
(by a factor of 2 to ~5 for 0.5 MeV, and 5 to ~ 10 for 2 MeV 
electrons) using the Albert and Young [2005] diffusion 
coefficients. 

[30] Second, by solving the bounce-averaged pitch angle 
and energy diffusion equation using fully calculated diffu- 

sion coefficients D [Albert and Young, 2005] and coeffi- 
cients with the parallel propagation approximation D11 

[Summers, 2005; Summers et ai, 2007a, 2007b], both 
calculated using the chorus wave model of Home et al. 
[2005], we show that diagonal diffusion coefficients of D11 

agree well with those of D only for low-energy particles 
(e.g., £=0.5 MeV). For high-energy electrons, the difference 
between the diagonal terms of D" and D produces large 
differences in fluxes at some pitch angles (difference of up 
to 5 orders of magnitude for 2 MeV electrons at n0 £ 15°, at 
t = 1 day). By including off-diagonal diffusion coefficients 
in our calculation, we show that the off-diagonal terms of 
D" can produce differences in fluxes of 4 orders of 
magnitude for 2 MeV electrons at t=\ day. A discussion 
of the details of different diffusion coefficients and another 
approximation for a full calculation of diffusion coefficients 
are presented by Albert [2007]. 

[31] Note that the above conclusions on the magnitude 
and location of differences that occur by omitting off- 
diagonal terms and assuming parallel propagating waves 
are very likely to be dependent on the wave model used. For 
example, a different latitudinal distribution of wave power 
may result in different diffusion coefficients and thus 
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Figure 7. Comparisons between results obtained from 
diffusion coefficients D" (dashed lines) and D (solid lines) 
for (top) E = 0.5 MeV and (bottom) E = 2.0 MeV at t = 
0.1 day (blue lines) and / = 1 day (red lines). 
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Figure Al. Local effects of ignoring off-diagonal terms. 
Lines are contours of particle numbers. Particles are 
released from o0 = 30° for E = 1.0 MeV and a0 = 50° for 
E = 3 MeV. (left) Off-diagonal terms are kept. DHap is 
positive at aQ = 30°, £=1.0 MeV and negative at «0 

= 50°, 
E = 3 MeV. (right) Off-diagonal terms are set to zero. 

different conclusions. The sensitivity of our results to wave 
models needs further study. However, before such work is 
done, it is safer to include both off-diagonal terms and 
oblique waves in calculations of electron flux. 

[32] The SDE method is less efficient when solutions on 
many grid points are desired. However, when parallel 
computers are available, computation time can be greatly 
reduced because of high parallelization efficiency. General- 
ization to 3-D including pitch angle, energy, and radial 
diffusion is straightforward. The SDE method is very 
promising for providing new insights into the relative roles 
of local acceleration and radial diffusion as acceleration 
mechanisms and the importance of pitch angle diffusion as a 
loss process. 

Appendix A:    Time-Forward SDE Method 
[33] To use the time-forward SDE method, we first set 

F = Gf and write the bounce-averaged pitch angle and 
energy diffusion equation (10) in the following form: 

dF 

dt 
F\ +2 

<)- (Da* 
dandp \ p 

•£<«-|(v). (Al) 

where hn0 and bp are defined in equations (16) and (17). 
Thus, the time-forward stochastic differential equations 
corresponding to equation (Al) are [ Alanko-Huotari et al, 
2007; Yamada et al., 1998; Qin et al., 2005] 

dAa(t) = bQ{t(t.A0.P)dt + audfV] +a]2dW2. (A2) 

dP(t) = bp(t,A0,P)dt + o-2ldfV^ + a22dW2, (A3) 

where components of the matrix a are also defined by 
equations (21)   (23). 

[34] Equations (A2) and (A3) are solved to give changes 
of particle coordinates (a0, p). Thus, after a given time 
period, the distribution of electrons can be obtained. Here 
we choose a time period short enough to ignore boundary 
effects. To explore local effects of off-diagonal diffusion 
coefficients on distributions of particles, we release 9000 
particles from a0 = 30°, E = 1 MeV, where D,Mp is positive, 
and Q0 = 50°, E = 3 MeV, where DtMp is negative. We obtain 
the distribution of particles shown in Figure Al after / = 0.06 
day for E = 3 MeV and t = 0.01 day for E = 1 MeV. We also 
turned off-diagonal diffusion coefficients on and off to show 
local effects of ignoring off-diagonal terms. Figure Al (left) 
has Dn0p 7^ 0, and Figure Al (right) has D,A)p = 0. We see 
from Figure Al that without DlMp , the local distribution of 
particles has a shape of an ellipse, while with DlMp this 
ellipse is tilted, and the tilt direction is determined by the 
sign of DlMp. With D,y0p positive (as for the a0 = 30°, E = 1 
MeV case) the ellipse tilts clockwise, and with D,Mp negative 
(rco = 50°, E = 3 MeV), the ellipse tilts counterclockwise. 
These results are consistent with previous analytical results 
using Green functions [Albert and Young, 2005]. 

[35] Acknowledgments. This work was supported by NASA grants 
NNG05GH93G and NNG05GJ95G, and NSF grants ATM-0316195 and 
ATM-0120950. Xin Tao wishes to thank Ming Zhang, Cristina Costantini. 
and Wei Zhu for helpful suggestions and discussions. 

[36] Zuyin Pu thanks Michael Henderson and another reviewer for their 
assistance in evaluating this paper. 

References 
Alanko-Huotari, K., I. G. Usoskin, K. Mursula, and G. A. Kovaltsov (2007), 

Stochastic simulation of cosmic ray modulation including a wavy hcliosphcric 
current sheet,./. Geophys. Res.. 112. A0810I, doi:10.1029/2007JA012280. 

Albert, J. M. (2004). Using quasi-linear diffusion to model acceleration and 
loss from wave-particle interactions. Space Weather. 2, S09S03, 
doi: 10.1029/2004SW000069. 

Albert, J. M. (2005), Evaluation of quasi-linear diffusion coefficients for 
whistler mode waves in a plasma with arbitrary density ratio, J. Geophys. 
Res., 110. A03218, doi:10.1029/2004JA010844. 

Albert. J. M. (2007). Simple approximations of quasi-linear diffusion coef- 
ficients, J. Geophys. Res., 112, A12202. doi: 10.1029/2007JA012551. 

Albert, J. M., and S. L. Young (2005), Multidimensional quasi-linear diffu- 
sion of radiation belt electrons, Geophys. Res. Lett., 32, LI4110, 
doi:10.1029/2005GL023191. 

Albright, B. J., D. Winskc, D. S. Lemons, W. Daughton, and M. E. Jones 
(2003), Quiet direct simulation of coulomb collisions, IEEE Trans. Plasma 
Sci.,31(l), 19-24, doi:10.H09/TPS.2003.808886. 

Baker, D. N., et al. (1997), Recurrent geomagnetic storms and rclativistic 
electron enhancements in the outer magnctosphcrc: 1STP coordinated 
measurements,./. Geophys. Res., 102(AT), 14,141-14,148. 

Bossy, M., E. Gobct, and D. Talay (2004), Symmetrized Eulcr scheme for 
an efficient approximation of reflected diffusions, J. Appl. Prohab., 41(1), 
877-889. 

Costantini, C, B. Pacchiarotti, and F. Sartorctto (1998). Numerical approx- 
imation for functionals of reflecting diffusion processes, S1AM J. Appl. 
Math., 58(\), 73-102. 

Frcidlin, M. (1985). Functional Integration and Partial Differential Equa- 
tions, Princeton Univ. Press, Princeton, N.J. 

Gardiner, C. W. (1985), Handbook of Stochastic Methods for Physics. 
Chemistry and the Natural Sciences, Springer, New York. 

Glaucrt, S. A., and R. B. Home (2005). Calculation of pitch angle and 
energy diffusion coefficients with the PADIE code. J. Geophys. Res.. 
110, A04206, doi:l0.1029/2004JA010851. 

Home, R. B., and R. M. Thome (2003), Rclativistic electron acceleration 
and precipitation during resonant interactions with whistlcr-modc chorus, 
Geophys. Res. Lett., 50(10), 1527, doi: 10.1029/2003GL016973. 

Home, R. B., S. A. Glaucrt. and R. M. Thome (2003). Resonant diffusion 
of radiation belt electrons by whistlcr-modc chorus, Geophys. Res. Lett., 
30(9), 1493, doi:10.1029/2003GLOI6963. 

Home, R. B., R. M. Thome, S. A. Glaucrt, J. M. Albert, N. P. Meredith, and 
R. R. Anderson (2005), Timescalc for radiation belt electron acceleration 
by whistler mode chorus waves, J. Geophys. Res., 110, A03225, 
doi:10.1029/2004JA010811. 

8 of 9 



A07212 TAO ET AL.: RADIATION BELT STOCHASTIC MODELING A07212 

Klocdcn, P. E., and E. Platen (1992), Numerical Solution of Stochastic 
Differential Equations, Springer, New York. 

Li. W., Y. Y. Shprits, and R. M, Thome (2007), Dynamic evolution of 
energetic outer zone electrons due to wave-particle interactions during 
storms,/ Geophys. Res., 112, A10220, doi:l0.1029/2007JA012368. 

Lyons, L. R. (1974a), General relations for resonant particle diffusion in 
pitch angle and energy, J. Plasma Phys., 12, 45-49. 

Lyons. L. R. (1974b), Pitch angle and energy diffusion coefficients from 
resonant interactions with ion-cyclotron and whistler waves, J. Plasma 
Phys., 12, 417-432. 

Okscndal. B. (1992), Stochastic Differential Equations: An Introduction 
With Applications, 3rd cd., Springer, New York. 

Press, W. H„ S. A. Tcukolsky, W. T. Vcttcrling, and B. P. Flanncry (2002), 
Numerical Recipes in C+ +. 77ie Art of Scientific Computing, 2nd cd.. 
Cambridge Univ. Press, New York. 

Qin, G.. M. Zhang, J. R. Dwycr, H. K. Rassoul. and G. M. Mason (2005). 
The model dependence of solar energetic particle mean free paths under 
weak scattering, Astrophys. J., 627, 562-566. 

Shprits, Y Y, R. M. Thornc, R. B. Home, and D. Summers (2006), 
Bounce-averaged diffusion coefficients for field-aligned chorus waves, 
J. Geophys. Res., Ill, A10225, doi:10.1029/2006JA011725. 

Summers. D. (2005). Quasi-linear diffusion coefficients for field-aligned 
electromagnetic waves with applications to the magnctosphcrc, / Geo- 
phys. Res., 110, A08213, doi: 10.1029/2005JA011159. 

Summers, D., B. Ni, and N. P. Meredith (2007a), Timescales for radiation 
belt electron acceleration and loss due to resonant wave-particle interac- 
tions: 1. Theory, J. Geophys. Res.. 112. A04206, doi:10.l029/ 
2006JA0U801. 

Summers, D., B. Ni, and N. P. Meredith (2007b). Timescales for radiation 
belt electron acceleration and loss due to resonant wave-particle interac- 
tions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion 
cyclotron waves, J. Geophys. Res., 112. A04207. doi: 10.1029/ 
2006JA01I993. 

Yamada, Y, S. Yanagita. and T. Yoshida (1998), A stochastic view of the 
solar modulation phenomena of cosmic rays, Geophys. Res. Lett., 25( 13), 
2353-2356. 

Zhang. M. (1999), A Markov stochastic process theory of cosmic-ray mod- 
ulation, Astrophys. J., 513, 409-420. 

J. M. Albert, Air Force Research Laboratory/RVBX. 29 Randolph Road, 
Hanscom Air Force Base, Bedford. MA 01731-3010, USA. 

A. A. Chan and X. Tao, Department of Physics and Astronomy. MS 108, 
Rice University, 6100 Main Street. Houston, TX 77005-1892, USA. 
(aac@rice.edu; xtao@ricc.edu) 

J. Miller, Department of Physics, University of Alabama in Huntsvillc, 
301 Sparkman Drive, Huntsvillc. AL 35899. USA. (millcrja@uah.edu) 

9 of 9 


